Hirzebruch–Zagier cycles and twisted triple product Selmer groups

نویسندگان

  • Yifeng Liu
  • Y. Liu
چکیده

Let E be an elliptic curve over Q and A another elliptic curve over a real quadratic number field. We construct a Q-motive of rank 8, together with a distinguished class in the associated Bloch–Kato Selmer group, using Hirzebruch–Zagier cycles, that is, graphs of Hirzebruch–Zagier morphisms. We show that, under certain assumptions on E and A, the non-vanishing of the central critical value of the (twisted) triple product L-function attached to (E, A) implies that the dimension of the associated Bloch–Kato Selmer group of the motive is 0; and the non-vanishing of the distinguished class implies that the dimension of the associated Bloch–Kato Selmer group of the motive is 1. This can be viewed as the triple product version of Kolyvagin’s work on bounding Selmer groups of a single elliptic curve using Heegner points. Mathematics Subject Classification 11G05 · 11R34 · 14G35

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DIAGONAL CYCLES AND EULER SYSTEMS I: A p-ADIC GROSS-ZAGIER FORMULA

This article is the first in a series devoted to studying generalised Gross-KudlaSchoen diagonal cycles in the product of three Kuga-Sato varieties and the Euler system properties of the associated Selmer classes, with special emphasis on their application to the Birch–Swinnerton-Dyer conjecture and the theory of Stark-Heegner points. The basis for the entire study is a p-adic formula of Gross-...

متن کامل

Zero-cycles on Hilbert-blumenthal Surfaces

Introduction. The main object of study in this paper with respect to zero-cycles is a special class of Hilbert-Blumenthal surfacesX, which are defined overQ as smooth compactifications of quasi-projective varieties S/Q, more precisely, of coarse moduli schemes S that represent the moduli stack of polarized abelian surfaces with real multiplication by the ring of integers in a real quadratic fie...

متن کامل

The Euler system of generalized Heegner cycles

In this thesis, we study the Selmer group of the p-adic étale realization of certain motives using Kolyvagin’s method of Euler systems [34]. In Chapter 3, we use an Euler system of Heegner cycles to bound the Selmer group associated to a modular form of higher even weight twisted by a ring class character. This is an extension of Nekovář’s result [39] that uses Bertolini and Darmon’s refinement...

متن کامل

Bounding Cubic-triple Product Selmer Groups of Elliptic Curves

Let E be a modular elliptic curve over a totally real cubic field. We have a cubic-triple product motive over Q constructed from E through multiplicative induction; it is of rank 8. We show that, under certain assumptions on E, the non-vanishing of the central critical value of the L-function attached to the motive implies that the dimension of the associated Bloch–Kato Selmer group is 0.

متن کامل

Borcherds products and arithmetic intersection theory on Hilbert modular surfaces

We prove an arithmetic version of a theorem of Hirzebruch and Zagier saying that Hirzebruch-Zagier divisors on a Hilbert modular surface are the coefficients of an elliptic modular form of weight two. Moreover, we determine the arithmetic selfintersection number of the line bundle of modular forms equipped with its Petersson metric on a regular model of a Hilbert modular surface, and study Falt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015